

Version 1.7 Page 1 of 1

Competition Day One

August 18, 2003

Overview Sheet

Task Overview Sheet

TASK MAINTAIN CODE REVERSE
1 second CPU 2 seconds CPU N/A Time limit per test case

Memory limit 64 MB 64 MB N/A

C -pipe –O2 -lm N/A

C++ -pipe –include /usr/include/stdlib.h –O2 -lm N/A

Compiler

options

Pascal -So –O1 -XS N/A

Number of tests 20 20 16

Maximum points per test 5 5 7

Maximum total points 100 100 100

Program header comment

when using C

/*

TASK: maintain

LANG: C

*/

/*

TASK: code

LANG: C

*/

N/A

Program header comment

when using C++

/*

TASK: maintain

LANG: C++

*/

/*

TASK: code

LANG: C++

*/

N/A

Program header comment

when using Pascal

{

TASK: maintain

LANG: PASCAL

}

{

TASK: code

LANG: PASCAL

}

N/A

Solution acceptance rule Example input is solved

correctly.

Example input is solved

correctly.

The file is in the format specified.

Competition Day One

August 18, 2003

Task Description

Trail Maintenance

Version 1.13 Page 1 of 2 maintain

Trail Maintenance (interactive task)

TASK

Farmer John's cows wish to travel freely among the N (1 ≤ N ≤ 200) fields (numbered

1…N) on the farm, even though the fields are separated by forest. The cows wish to

maintain trails between pairs of fields so that they can travel from any field to any other

field using the maintained trails. Cows may travel along a maintained trail in either

direction.

The cows do not build trails. Instead, they maintain wild animal trails that they have

discovered. On any week, they can choose to maintain any or all of the wild animal trails

they know about.

Always curious, the cows discover one new wild animal trail at the beginning of each

week. They must then decide the set of trails to maintain for that week so that they can

travel from any field to any other field. Cows can only use trails which they are currently

maintaining.

The cows always want to minimize the total length of trail they must maintain. The cows

can choose to maintain any subset of the wild animal trails they know about, regardless of

which trails were maintained the previous week.

Wild animal trails (even when maintained) are never straight. Two trails that connect the

same two fields might have different lengths. While two trails might cross, cows are so

focused, they refuse to switch trails except when they are in a field.

At the beginning of each week, the cows will describe the wild animal trail they

discovered. Your program must then output the minimum total length of trail the cows

must maintain that week so that they can travel from any field to any other field, if there

exists such a set of trails.

Input: standard input

• The first line of input contains two space-separated integers, N and W. W is the

number of weeks the program will cover (1 ≤ W ≤ 6000).

• For each week, read a single line containing the wild animal trail that was

discovered. This line contains three space-separated integers: the endpoints (field

numbers) and the integer length of that trail (1…10000). No wild animal trail has

the same field as both of its endpoints.

Competition Day One

August 18, 2003

Task Description

Trail Maintenance

Version 1.13 Page 2 of 2 maintain

Output: standard output

Immediately after your program learns about the newly discovered wild animal trail, it

should output a single line with the minimum total length of trail the cows must maintain

so that they can travel from any field to any other field. If no set of trails allows the cows

to travel from any field to any other field, output “-1”.

Your program must exit after outputting the answer for the last week.

Example exchange:
Input Output Explanation

4 6

1 2 10

 -1 No trail connects 4 to the rest of the fields.

1 3 8

 -1 No trail connects 4 to the rest of the fields.

3 2 3

 -1 No trail connects 4 to the rest of the fields.

1 4 3

 14 Maintain 1 4 3, 1 3 8, and 3 2 3.

1 3 6

 12 Maintain 1 4 3, 1 3 6, and 3 2 3.

2 1 2

 8 Maintain 1 4 3, 2 1 2, and 3 2 3.

 program exit

CONSTRAINTS

Running time 1 second of CPU

Memory 64 MB

SCORING

You will receive full points on each test case for which your program produces the

correct output. No partial credit will be given on any test case.

Task Description

Comparing Code

Competition Day One

August 18, 2003

Version 1.10 Page 1 of 2 code

Comparing Code

TASK

Racine Business Networks (RBN) has taken the Heuristic Algorithm Languages (HAL)

company to court, claiming that HAL has taken source code from RBN UNIX and

contributed it to the open-source operating system HALnix.

RBN and HAL both use a programming language with one statement per line, each of the

form: STOREA = STOREB + STOREC where STOREA, STOREB, and STOREC are

variable names. In particular, the first variable name starts in the first column and is

followed by a space, an equals sign, a space, a second variable name, a space, the

addition symbol, a space, and a third variable name. The same variable name might

appear more than one time on a single line. Variable names consist of 1…8 uppercase

ASCII letters (‘A’…‘Z’).

RBN claims that HAL copied a consecutive sequence of lines directly from RBN's source

code, making only minor modifications:

• RBN claims that HAL changed some of the variable names in order to disguise

their crime. That is, HAL took a series of lines from RBN’s program and, for each

variable in it, changed all occurrences of that variable to a new variable name,

although the new variable name might be the same as the original. Of course, no

two variables were changed to the same new variable name.

• RBN also claims HAL might have changed the order of the right-hand side of

some lines: STOREA = STOREB + STOREC might have been changed to

STOREA = STOREC + STOREB.

• RBN claims that HAL did not change the order of the lines of RBN’s source code.

Given source code for programs from RBN and HAL, find the longest consecutive

sequence of lines from HAL's program that could have come from a consecutive

sequence of lines from RBN's program using the modifications above. Note that the

sequences of lines from the two programs do not have to start at the same line number in

both files.

Input: code.in

• The first line of input contains two space-separated integers, R and H (1 ≤ R ≤

1000; 1 ≤ H ≤ 1000). R is the number of lines of source code in RBN's program;

H is the number of lines of source code in HAL's program.

• The next R lines contain RBN's program.

• The next H lines contain HAL's program.

Task Description

Comparing Code

Competition Day One

August 18, 2003

Version 1.10 Page 2 of 2 code

Example input:
4 3

RA = RB + RC

RC = D + RE

RF = RF + RJ

RE = RF + RF

HD = HE + HF

HM = HN + D

HN = HA + HB

Output: code.out

The output file should contain a single line with a single integer that is the length of the

longest consecutive sequence of lines that HAL might have copied from RBN and

transformed.

Example output:
2

Lines 1-2 of RBN's program are the same as lines 2-3 of HAL's program, if the following

variable name substitutions are performed on RBN's program: RA → HM, RB → D,

RC → HN, D → HA, RE → HB. There is no matching with three or more lines.

CONSTRAINTS

Running time 2 seconds of CPU

Memory 64 MB

SCORING

You will receive full points on each test case for which your program produces a correct

output file. No partial credit will be given on any test case.

Competition Day One

August 18, 2003

Task Description

Reverse

Version 1.11 Page 1 of 2 reverse

Reverse (output-only task)

TASK

Consider a Two-Operation Machine (TOM for short) with nine registers, numbered 1…9.

Each register stores a non-negative integer in the range 0…1000. The machine has two

operations:

S i j Store one plus the value of register i into register j. Note that i may

equal j.

P i Print the value of register i.

A TOM program includes a set of initial values for the registers and a sequence of

operations. Given an integer N (0 ≤ N ≤ 255), generate a TOM program that prints the

decreasing sequence of integers N, N-1, N-2, …, 0. The maximum number of consecutive

S-operations should be as small as possible.

Example of a TOM program and its execution for N=2:

Operation New Register Values Printed

 1 2 3 4 5 6 7 8 9 Value

Initial values 0 2 0 0 0 0 0 0 0

P 2 0 2 0 0 0 0 0 0 0 2

S 1 3 0 2 1 0 0 0 0 0 0

P 3 0 2 1 0 0 0 0 0 0 1

P 1 0 2 1 0 0 0 0 0 0 0

Input cases are numbered 1 through 16 and are available via the contest server.

Input:

• The first line of the input file contains K, an integer specifying the input case

number.

• The second line of input contains N.

Example input:
1

2

Output:

The first line of output should be the string “FILE reverse K”, where K is the case

number.

The second line of output should contain nine space-separated values representing the

desired initial values of the registers, in order (register 1, then register 2, etc.).

Competition Day One

August 18, 2003

Task Description

Reverse

Version 1.11 Page 2 of 2 reverse

The rest of the output file should contain the ordered list of operations to be performed,

one per line. Thus, the third line contains the first operation to perform, and so on. The

last line of the file should be the one that prints 0. Each line should be a valid operation.

The instructions should be formatted as in the example output.

Example output #1 (partial points):

FILE reverse 1

0 2 0 0 0 0 0 0 0

P 2

S 1 3

P 3

P 1

Example output #2 (full points):

FILE reverse 1

0 2 1 0 0 0 0 0 0

P 2

P 3

P 1

SCORING

Scoring of each test case will be based on correctness and optimality of the TOM

program given.

Correctness: 20%

A TOM program is correct if it performs no more than 131 consecutive S-operations and

the sequence of values printed by it is correct (contains exactly N+1 integers, starting at

N and ending at 0). If any S-operation causes a register to overflow, the TOM program is

considered incorrect.

Optimality: 80%

Optimality of a correct TOM program is measured by the maximum number of

consecutive S-operations in the program, which should be as small as possible. Scoring

will be based on the difference between your TOM program and the best known TOM

program.

